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The use of low-dimensional manifolds to simplify the description of complicated systems of kinetics equations
is investigated. Many models exhibit a generic behavior, whereby kinetic trajectories rapidly approach a
surface of much lower dimension than that of the full phase space of concentrations, and subsequently show
slow relaxation to equilibrium restricted to the surface. Traditional methods, such as the quasi-steady-state
approximation, can be viewed as approximate schemes to construct the low dimensional manifolds. A number
of techniques for the construction of low-dimensional manifolds are discussed and compared. A more general
formulation of several previous methods is provided. A new technique, the global eigenvalue method, is
derived. This method combines the conceptual advantages of the Maas-Pope algorithm with the accuracy of
global trajectory propagation. One- and two-dimensional manifolds are constructed using the global eigenvalue
method for a 38-reaction mechanism for hydrogen combustion. A new formulation of sensitivity analysis is
provided which allows testing a reduced mechanism to changes in the rate constants.

I. Introduction

It is common for realistic reaction mechanisms to involve
many elementary reaction steps and many distinct chemical
species.1 For example, the recent model of Chevalier et al.2 for
the ignition of heptane contains 620 chemical species and about
7000 reactions. Obviously, then, quantitative models for the
kinetics of such systems become large and, sometimes, physi-
cally obscure. If a homogeneous, isothermal system consists of
N-chemical species andM-elementary reactions, then its kinetics
is described byN-ordinary differential equations (ODEs) each
of which may contain up toM terms. Furthermore, the ODEs
are generally stiff3 because the values for the elementary rate
constants are typically distributed over a wide range of
magnitudes. Despite their complexity, kinetic trajectories (i.e.,
solutions to the kinetics equations) can often be obtained for
very large models using efficient stiff solvers such as LSODE.4

Although they are powerful tools, packages such as LSODE
are not panaceas. If spatial inhomogeneity is included, e.g., in
modeling flames, the simulation may still become intractable.5

Furthermore, if the number of independent species grows too
large, such as with polymerization reactions, the computation
may become impossible. In a more conceptual sense, the
availability of an efficient ODE solver does not provide a
physical picture for the reaction even if the kinetic trajectories
can be numerically generated. In practical terms, the simple
agreement between numerical trajectories and experimental data
is often insufficient to establish the accuracy of elementary rate
constants.

For all of the reasons mentioned above, there is considerable
interest in developing schemes for kinetic simplification.6,7 The
essential goal of kinetic simplification is to devise reduced
mechanisms containing a smaller number of independent species
that can reproduce the characteristics of the larger models. The
most familiar approach employs the quasi-steady-state-ap-
proximation (QSSA) wherein the rate equations for unstable
intermediates are set to zero.1,8 Each of the resulting algebraic

equations can be used to eliminate one species from the model.
Although it is an inherently approximate method, the QSSA
can be systematically applied and often yields good results. More
recently, lumping techniques have been devised which explicitly
combine elementary species concentrations into a smaller
number of “lumped” concentrations.9 The resulting reduced
mechanism involves ODE’s only for the lumped species. Other
more formal techniques use singular perturbation theory to
eliminate transient species from the mechanism that result from
inherent separation of time scales.10 One technique that has
attracted considerable attention in the combustion kinetics
community is the intrinsic low-dimension manifold (ILDM)
method of Maas and Pope.11,12,13,14In the ILDM technique, a
local analysis of the kinetics equations is used to identify rapidly
and slowly contracting directions in the phase space of
concentrations. At “long times” kinetic trajectories are observed
to collapse to the vicinity of curvilinear low dimensional
manifolds defined as surfaces on which the flow is oriented
purely in the slow directions. The ILDM method will be
discussed in more detail in section II because it serves as the
starting point for our global eigenvalue method.

Recently, we have discussed geometrical approaches to
kinetic simplification.15,16 From this viewpoint, simplified
models are constructed employing attracting low-dimensional
manifolds (ALDM) in the phase space of concentrations. If there
are N-independent chemical species, then full phase space in
which kinetic trajectories can evolve is N-dimensional. Sim-
plification occurs when, on some sufficiently long time scale,
trajectories within the phase space all collapse to neighborhood
of some much lower dimensional manifold that is generally
curvilinear. The ALDM differs from the ILDM of Maas and
Pope in that the ALDM represents the exact manifold to which
propagated trajectories attract, whereas the ILDM is an ap-
proximation based on infinitesimally propagated trajectories.
Thus, the ALDM is a global attractor while the ILDM is a local
attractor.
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As an illustration, in Figure 1, we plot a one-dimensional
ALDM for the problem of hydrogen combustion, which will
be discussed in section III. There are eight species; thus, the
phase space is nominally eight-dimensional, yet on a time scale
of 0.01 s, trajectories of widely different initial conditions
approach a single one-dimensional curve. Thus, to simulate the
kinetics on long times, the full model may be replaced a much
smaller model which only includes the manifold. Hence, in
principle, at long times there is only one independent species,
albeit a nonlinear function of the all the other species. In a sense,
the QSSA, the ILDM, lumping, and perturbation theory all give
approximations to the ALDM. In some cases, the approximation
errors may be small. However, it is important to have techniques
available to obtain the exact ALDM for cases when approximate
methods fail.

The physical basis for kinetic simplification using ALDM is
a separation of time scales that derive from intrinsically fast
and slow reactions. Fast reactions give transient behavior, which
we do not attempt to simplify, whereas the remaining slow
processes define the asymptotic dynamics along a low dimen-
sional manifold. From the standpoint of phase space dynamics,
fast and slow kinetics processes translate into rapidly and slowly
contracting directions in phase space. Along the ALDM, the
trajectories evolve orthogonal to the rapidly contracting direc-
tions in a manner to be described below.

Pioneering work on the construction of ALDM has been
carried out by Fraser and Roussel,17,18,19,20who used the term
“slow manifolds”. The essential observation of Fraser and
Roussel was that the ALDM could be viewed as an attracting
fixed point of a functional mapping. Thus, an initial guess for
the ALDM could be iteratively improved. Fraser and Roussel
applied the mapping technique to several low-dimensional
problems in enzyme kinetics using computer algebra to iterate
the formal kinetics equations. In previous work, we modified
the format of the iteration to represent species concentrations
on numerical grids, which allows the technique to be applied
to much larger mechanisms. Furthermore, it was found that
numerical instabilities in the iteration could be quenched by
breaking each functional iteration into a number of partial
iterations that were implemented as a numerical integration.
Further details will be provided in section III.

In this article, we shall discuss several techniques for the
construction of the ALDM. Some of the techniques discussed
have been presented previously and are reproduced in a
somewhat more general context. The main focus here will be
the derivation of a new method, the global eigenvalue method,
which combines the intuitive appeal of the MP(Maas-Pope)-
algorithm with the accuracy of exact trajectory based methods.
The method is applied to a 38-reaction mechanism for hydrogen
combustion. One and two-dimensional ALDMs are constructed
and discussed. The use of the ALDM for sensitivity analysis
will be presented.

II. Methods for Constructing Manifolds

A. Kinetics on Manifolds. When a kinetic mechanism is
simplified using a low-dimensional manifold, it is necessary to
re-express the kinetic equations in terms of a coordinate
parametrization of the manifold. In the simplest cases, this might
involve merely selecting a subset of the initial concentrations
to serve as the independent variables. In general, however, the
manifold can be folded which leads to a multivalued function
in this representation. Therefore, as a prelude to the discussion
of the techniques for manifold construction, we discuss how
the reduced mechanism can be expressed in terms of a general
single valued parametrization of the manifold.

Consider a homogeneous kinetic system consisting ofn-
chemical species, [A1,...,An], which are described by a vector
of positive concentrations,y(t) ) [y1(t),...,yn(t)]. The kinetic
scheme is composed ofM-elementary reactions of arbitrary
order. Thus, the concentrations usually solve the equations

where

and

The coefficientsVi,j are chosen consistent with the molecularities
of the reaction steps. In general, the dimensionality of the phase
space of concentrations can, and should, be reduced by using
theNC constants of motion consistent with the kinetic scheme.
For a closed system, these constants would include those for
conservation of mass of each element present but also may
include other constants associated with symmetries in the
kinetics equations (2.1). Thus, for a given choice of constants,
the system isN ) n-NC dimensional. By convention, we will
eliminate the lastNC species from the concentration vector,y,
and the rates,F, which shall henceforth be considered as
N-dimensional vectors.

We begin with a discussion of one-dimensional manifolds,
M1. The manifold is a continuous curve, [Y1(s),...,YN(s)] in the
N-dimensional space, which is parametrized bys, some smooth
function of y. Thus

and

Figure 1. One-dimensional manifold for hydrogen combustion. The
solid line represents the one-dimensional ALDM obtained using the
global eigenvalue method. The dashed lines are randomly selected
trajectories started at various initial conditions and show rapid attraction
to the manifold on time scales of 10-3 s. The large dot is the equilibrium
point. The conditions chosen for the simulation wereT ) 1500 K,p )
0.207 bar,C1 ) 1016/cm3, andC2 ) 1.5 × 1016/cm3.

dy
dt

) F(y) (2.1)

Fi(y) ) ∑
j ) 1

M

Vi,jRj (2.2)

Ri ) ki(T)‚yi1

p1 ‚ ‚ ‚yin

pn (2.3)

Yi ) Yi(s) (2.4)

s ) s(y) (2.5)
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In the simplest case,s may be taken as one of the species
concentrations. The kinetics equations can be written as

where ds/dt can be replaced by

The only restriction onM1 at this point is that it follows the
orbit of an actual kinetic trajectory. Equation 2.7, applied to
the “special” orbitY(s), effectively provides a one-dimensional
reduced mechanism for the kinetics described by (2.1).

An m-dimensional manifold,Mm, can be parametrized by
m-functions

which leads to the first-order partial differential equation

where

Again, we assume here only that the manifold is constructed
from exact solutions to the kinetic equations. Them-equations
in (2.10) provide anm-dimensional reduced model.

Implicit in all low-dimensional manifold methods is the need
to construct an explicit representation of the manifold. In most
cases, one is given a finite number of points on the manifold,
e.g., as values of kinetic trajectories at discrete time steps,y(tk).
The manifold can be continuously represented using polynomial
or spline interpolation with these data. A manifold of fixed
dimension must be constrained to be smooth, i.e., differentiable,
in keeping with the physical interpretation of eq 2.1. The most
difficult matter is the need to construct a globally single valued
parametrization of the manifold. For a local patch of the
manifold, it is always possible to construct a chart that
parametrizes anm-dimensional manifold using points inRm.21

However, the use of a number of distinct charts is unwieldy as
a practical matter, and a global coordinate system is desirable.
If subset ofm-concentrations for which the manifold is single
valued cannot be found, it is possible thatm-linear combinations
of concentrations can be used. A given choice can be tested
against the requirement that allm-partial derivatives remain
bounded on the manifold.

For a one-dimensional manifold, a convenient parametrization
is simply the propagation time along the orbit. Given a
trajectory,y(t), which follows the manifold,Y(s), for t>0 we
have

Because the manifold orbit generally slows as it progresses along
the manifold, the logarithm of the propagation time tends to
provide a more satisfactory parameter. Higher dimensional
manifolds require more effort to reconstruct from trajectory data

because families of orbits must be combined. Time may be used
as one parameter, but trajectory indices must be also employed.

To achieve an accurate simplification of a kinetic model, it
is necessary to locate the ALDM to which kinetic trajectories
are attracted at sufficiently long times. In the following sections,
we shall present several strategies for constructing these
manifolds. For completeness, we begin with a discussion of
known methods that are local in phase space. That is, methods
that involve an analysis of the kinetics equations at single points.
Except for linear systems, such methods are approximate
although they can be quite accurate. Our main focus, however,
shall be on global methods that (implicitly or explicitly) involve
trajectories propagated for finite times. In principle, global
methods can be converged by testing the attractivity of the
manifolds for increasing time intervals.

B. Local Approximations for ALDM . As noted above, the
physical basis for the simplification of kinetic systems is a
separation of time scales. For local methods, such as the QSSA
and MP algorithms, fast and slow processes are inferred by
examining the kinetics equations at isolated points in phase
space. In the QSSA approximation, the fast processes are
assumed to dominantly involve highly reactive intermediate
species. By setting the corresponding rate equations to zero,
i.e., 0) Fi(y), one is effectively identifying the manifold where
the rapid transient has decayed.

The MP-approximation represents a significant advance over
the QSSA-method in both accuracy and generality. The fast and
slow local directions in phase space can be found without the
need to arbitrarily identify certain species as being highly
reactive intermediates. Indeed, the eliminated species can be
combinations of all the species and nonlinear functions in phase
space.

The simplest way to derive the MP-approximation is to
consider the evolution of the kinetic trajectories for very short
time interval, ∆t. For ∆t small, we can solve the kinetics
equation by first-order Taylor expansion. Consider the trajectory
flow in the vicinity of a central trajectory,y0(t). Trajectories
neighboringy0(t) in phase space are described by the displace-
ment vector

To first-order in the displacement, we may approximate eq 2.1
as

where the Jacobian matrix,J, is

For very short time intervals,∆t, we may approximateJ as a
constant, which then renders eq 2.12 into the form of a linear
system with constant coefficients. Choosing an eigenvector
basis, [z1,...zN] to expressδy, the time scales can be identified
through the familiar expression

where

dyi

ds
)

Fi(y)

ds/dt
(2.6)

ds

dt
) ∑

i ) 1

N ∂s

∂yi

‚Fi(y(s)) (2.7)

sj ) sj(y) (2.8)

∑
j ) 1

m ∂yi

∂sj

‚
dsj

dt
) Fi (2.9)

dsj

dt
) ∑

i ) 1

N ∂sj

∂yi

‚Fi(y(s)) (2.10)

s ) ∫0

t
dt ) ∫y0

y F ‚dy
F‚F

(2.11)

δy(t) ) y(t) - y0(t) (2.12)

d(δy)
dt

) J•δy (2.13)

Ji,j )
∂Fi

∂yj
|y ) y0

(2.14)

δy ) ∑
j ) 1

N

cjzje
λj∆t (2.15)

J‚zj ) λjzj (2.16)

10358 J. Phys. Chem. A, Vol. 105, No. 45, 2001 Skodje and Davis



The eigenvectors of the most negativeRe(λi) correspond to the
most strongly contracting directions. The eigenvectors of the
least negativeRe(λi) define the slowest contracting directions.

In the Maas-Pope algorithm, the attractingm-dimensional
manifold (IDLM) is defined as the points in phase space where
the N-m fastest eigenvectors have zero-projection along the
kinetic flow, i.e.

Equation 2.17 defines the sense in which the ILDM is orthogonal
to the directions of transient decay and, thus, represents pure
asymptotic motion. In general, the loci of points defining the
manifold are determined numerically using, e.g., Newton’s
method to locate phase space points where eq 2.17 is satisfied.
The method is expected to be most accurate for large separation
of time scale. For a linear system, eq 2.14 can be extended to
arbitrary large∆t and thus the MP-method is exact for such
systems. Errors in the MP-method are found15,22 to be largest
where the curvature of the manifold is highest. We find that
the MP-method is most stable when the eigenspace is repre-
sented using vectors obtained using Gramm-Schmidt ortho-
gonalization. We should also note that the numerical imple-
mentation of the method becomes problematic when the
eigenvalues cross as one proceeds along the manifold.

C. Global Methods. The local methods for the determination
of ALDM’s have often proven satisfactory for kinetic simpli-
fication. However, such methods are inherently approximate and
occasionally pathological. Global methods can, in principle,
converge to the exact ALDM and are generally more desirable.
At the minimum, global methods are useful to give error
estimates for local methods. Here, we discuss several strategies
for the determination of globally attractive manifolds.

1. Trajectory Methods.As seen in Figure 1, the attracting
manifold, M1, describes the long time evolution of every
trajectory, but it is shadowed for longer distances by those
trajectories started further from the equilibrium point. The
intuitive basis of our predictor-corrector method, described in
ref 15, is to start a trajectory “very” far away from equilibrium,
which thus is attracted to and becomes indistinguishable from
the manifold for the physically relevant regions of phase space.
In general, to obtain the manifold over the full range, it is
necessary to start the trajectories in regions where some of the
concentrations are negative, i.e., unphysical regions of phase
space. This can create problems because there is no guarantee
that unphysical trajectories will approach equilibrium. Thus, in
the predictor-corrector method, it was necessary to carefully
extend the starting point of the trajectory backward in a
progressive fashion that ensured the trajectory approached
equilibrium and was physically reasonable.

Another trajectory-based approach discussed in ref 15 is the
“saddlepoint” method. Many systems possess saddlepoints in
phase space,ys, which are stationary points, i.e.,F(ys) ) 0,
having at least one positive Re(λi) and, thus, at least one
repelling direction in phase space. The saddlepoints invariably
occur in the unphysical region of phase space, yet can be crucial
in defining global structures in phase space such as the
boundaries of basins of attraction. The manifold emanating from
the most unstable direction of the saddle can be propagated into
the physical region of phase space and ultimately to the
equilibrium point to yield the global attracting one-dimensional
manifold. In favorable cases, families of orbits may be
propagated to construct higher-dimensional manifolds.

2. Modified Fraser Algorithm.As mentioned in the Introduc-
tion, Fraser and Roussel have suggested an iterative scheme to

generate the ALDM.17,18,19,20In this method, time is eliminated
from the rate equations to give orbit equations in phase space.
Thus, for a one-dimensional manifold parametrized for simplic-
ity by the concentrationy1 as the independent variable we have,
by dividing pairs of equations in (2.1)

The manifold is thus parametrized byy1 and time is eliminated.
The key observation of Fraser and Roussel was that eq 2.18
can be used to set up an iterative functional mapping for which
the ALDM is a fixed point. We imagine an initial guess for the
slow manifold written as anN-1 dimensional vector

A mapping is defined as

that can be numerically inverted to provide the explicit iteration

whereH is the inverse function ofg. Provided that the initial
guess is reasonable, iteration of eq 2.21 was found to approach
a slow manifold.

Previously,15 we have generalized and modified the Fraser-
Roussel method for application to larger kinetic systems. In the
original formulation, the manifold was represented through
analytic functions and the iteration was accomplished with a
symbolic manipulator such as MAPLE. We found a more facile
representation was to adopt a spatial grid for the independent
variable, y1, upon which the dependent concentrations were
numerically expressed. The derivatives, dyn/dy1, were then
evaluated with finite difference formulas and the iteration was
accomplished numerically at each grid point. As noted earlier,
however, the mapping is only asymptotically convergent, so that
after enough iterations the manifold eventually “buckles” and
diverges. The convergence of the iteration, eq 2.21, was
stabilized by effectively breaking up each iteration into a
sequence of fractional iterations which could ultimately be
written as a differential equation in a continuous iteration
variable,τ

It was found15 that the explicit root search involved in
constructingH could be circumvented by employing the equally
accurate first-order expression

obtained by expansion of eq 2.22 in the change iny. In eq 2.23
y′ is dy/dy1.

Higher dimensional manifolds may also be obtained using
the functional mapping technique.19 Consider the general case
where anm-dimensional manifold parametrized by the functions

〈zj|F〉 ) 0 j ) m + 1,...,N (2.17)

dyi/dt

dy1/dt
)

dyi

dy1
)

Fi

F1
≡ gi(y,y1) (2.18)

y0(y1) ) [y2
0(y1),... ,yN

0(y1)]
T (2.19)

dyn

dy1
) g(yn+1,y1) (2.20)

yn+1 ) H(dyn

dy1
;y1) (2.21)

dy
dτ

) H - y (2.22)

dy
dτ

) - g ‚[ dg
dy′]

-1
(2.23)
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sj. Combining eqs 2.9 and 2.10, we obtain the functional
mapping

Because in this construction,∂yi
n/∂sj is known while yn+1 is

unknown, we may invert eq 2.22 to obtain the explicit functional
mapping

which then can be applied at every grid point. As before, each
iteration can be broken into a set of integration steps to stabilize
the algorithm,

3. The Global EigenValue Method.A method that combines
some of the advantages of the MP-method with accuracy of
the trajectory-based techniques is the global eigenvalue method
that is presented here for the first time. Recall that the MP-
method could be formulated as a search for the most attracting
directions of the local dynamics, i.e., for time propagations that
are infinitesimal. In the present method, we reformulate this
approach assuming arbitrary finite time propagation. Consider
the trajectory dynamics near to a center trajectory,y0(t). Thus,
we have

where

The dynamics of the perturbation,δy, satisfy

which we recall was the starting point for the MP-method. The
Jacobian matrix, defined by eq 2.14, is evaluated on the center
trajectory and thus does not depend on the dependent variables
δy(t). Unlike the MP-method, we do not restrict time intervals
to be small, soJ is time-dependent through its dependence on
y0(t). Therefore, a formal solution to the initial value problem
(2.27) can be written as

whereyj
0(t) are the components of the center trajectory. The

linear propagator matrix,M , is familiar from dynamical systems
theory23 and is sometimes referred to as the Mondronomy

matrix. An eigenvector analysis of theM -matrix defines the
fast and slow contracting directions of the flow. We write

where the eigenvalues,Γi, and the eigenvectors,Λi, will
generally depend on time. An attractingm-dimensional manifold
will be defined by the orthogonality of the flow to theN-m
fastest eigenvectors

In eq 2.30, the inner product is taken between the left-
eigenvector ofM and the flow vectorF eq 2.30 is combined
with a Newton-Raphson search over the initial conditionsy0

to locate the points on Mm. Clearly, the global eigenvalue
method becomes equivalent to the MP-algorithm whent is
infinitesimally small. For finitet, the method converges to the
globally accurate ALDM. In practice, to computeM , it is
necessary to computeN-satellite trajectories that are slightly
displaced fromy0.

As a practical matter, we require a value for propagation time,
t. This quantity should properly be regarded as a convergence
parameter. Thus, there will exist aT such that when|t|>|T| the
manifold point is converged to some accuracyε. Furthermore,
there is no reasont cannot be chosen to be negative provided
that eq 2.30 is applied to the largest Re(Γi) eigenvectors. In
fact, the reverse propagation of trajectories often provides the
most robust convergence of the method. Of course since the
backward integration of the central trajectory is unstable,-t
should not be set too large.

An approximate analysis that is often accurate represents the
linearized propagatorM (t) with

where

In that case, the eigenvalue analysis ofM is equivalent to that
of A, which is simpler to calculate. If the kinetics equations
involve only involve reaction of second order or lower, then it
becomes quite simple to calculate theA-matrix. For such
systems, each element ofJ is a linear function of the concentra-
tions, so

Thus, to computeA for second-order systems requires only the
integration of theN-concentrations along the trajectory. Higher
order approximations toM , obtained from the Magnus expan-
sion24 or the Dyson time-ordered product25 may prove useful
in some cases.

To illustrate the convergence of the method, we apply the
global eigenvalue method to a simple two-dimensional model
problem where the exact ALDM is analytically known.15 The
kinetics equations are given by

∑
j ) 1

m ∂yi
n

∂sj

‚ ∑
k ) 1

N ∂sj

∂yk
n+1

‚Fk(y
n+1) ) Fi(y

n+1) (2.24)

yn+1 ) H(dyn

ds1
,... ,

dyn

dsm
;s1(y

n),... ,sm(yn))

dy
dτ

) H - y

dy(t)
dt

) F(y) (2.25)

y(t) ) y0(t) + δy(t) (2.26)

d(δy(t))
dt

) J(y0) ‚δy(t) (2.27)

δy(t) ) [∂y1
0(t)

∂y1
0(0)

· · ·
∂yN

0(t)

∂yN
0(0)

·
·
·

· · ·
· · ·

∂y1
0(t)

∂y1
0(0)

· · ·
∂yN

0(t)

∂yN
0(0)

]•δy(0) ≡ M (t) ‚δy(0)

(2.28)

M (t)•Λi ) ΓiΛi (2.29)

〈Λj|F〉 ) 0 j ) 1,... ,N - m (2.30)

M (t) ≈ eA(t) (2.31)

A(t) ) ∫0

t
J(t′)dt′ (2.32)

Ai,j(t) ) ∫0

t
∂Fi(y0(t′))

∂y0,j(t′)
dt′ ) ∫0

t
(∑

k

ai,j,ky0,k(t′) + bi,j)dt′ (2.33)

dx
dt

) - x (2.34)

dy
dt

) - γy +
(γ - 1)x + γx2

(1 + x)2
(2.35)
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where γ > 1. These differential equations can be solved
analytically to yield

It is clear that the transient term, which contains the factor e-γt,
goes to zero on the curve

which therefore defines the one-dimensional ALDM. The
linearized propagator is found directly from eqs 2.36 and 2.37

The eigenvalues are e-γt and e-t the corresponding left-
eigenvectors are

For negativet, the most unstable direction is defined by eq 2.40.
The manifold equation〈Λ1

L|F〉 ) 0 yields

The deviation from the exact manifold is seen to scale to zero
with the ratio of eigenvalues, i.e., e(γ-1)t.

In Figure 2, we plot the manifolds obtained for the relatively
nonstiff case ofγ ) 2. The exact manifold is shown with a
solid line. The application of eq 2.30 for infinitesimal times,
which is equivalent to the MP-algorithm, gives a crude

approximation to the manifold. Thet ) -1 application corrects
part of the error, whereast ) -5 gives essentially the exact
manifold. Plotted with a dashed line is the approximate
expression eq 2.31 fort ) -5. Although not perfect, this result
represents a substantial improvement over the local approxima-
tion.

III. Applications

As an application of the ALDM concept, we consider the
isothermal combustion of hydrogen. We adopt a model consist-
ing of 38 elementary reactions, listed in Table 1, and 8 chemical
species: H2, O2, H, O, OH, OOH, HOOH, and H2O. The
reaction was studied in the temperature range of 1500-4000
K, for concentrations 1016-1017 molecule/cm3, and in the
presence of an inert buffer gas at pressures of 0.01-1 bar. The
rate constants were the same as those used in ref 11, with one
additional reaction added.15 There are two exact constants of
motion in this system,C1 andC2, which are the total oxygen-
atom and hydrogen-atom concentrations, respectively. As we
shall see, there is an additional quantity that is approximately
conserved on certain time scales, the total concentration of
molecules.

Some trajectories forT ) 1500 K are plotted on a log/log
scale in Figure 3. It is seen that there are at least three distinct
time scales at work. At very short times,< 10-6 sec, the
concentrations vary independently. This is an initiation phase
of the combustion. Then comes a stable region lasting between
10-6-10-3 sec. During this interval, we see from the lower

Figure 2. One-dimensional manifolds for the model problem. The solid
line is the exact manifold,y ) x/(1 + x). The dot-dashed line is the
MP-approximation. The dotted line is thet ) -1 global eigenvalue
result, while the symbols are fort ) -5. The dash curve is the
approximate result using eq 2.31 witht ) -5.

TABLE 1:

1 O2 + H f O +OH
2 O + OH f O2 + H
3 O + H2 f H + OH
4 H + OH f H2 + O
5 H2 + OH f H + H2O
6 H + H2O f H2 + OH
7 OH + OH f O + H2O
8 O + H2O f OH + OH
9 H + H + M f H2 + M

10 H + OH +M f H2O + M
11 O+ O + M f O2 +M
12 O2 + H + M f HO2 +M
13 H + HO2 f OH + OH
14 OH+ OH f H + HO2

15 H + HO2 f O2 + +H2

16 O2 + H2 f H + HO2

17 H + HO2 f O + H2O
18 O+ H2O f H + HO2

19 O+ HO2 f O2 + OH
20 O2 + OH f O + HO2

21 OH+ HO2 f O2 + H2O
22 O2 + H2O f OH + HO2

23 HO2 + HO2 f O2 + H2O2

24 OH+ OH + Mf H2O2 + M
25 H + H2O2 f H2 + HO2

26 H2 + HO2 f H + H2O2

27 H + H2O2 f OH + H2O
28 OH+ H2O f H + H2O2

29 O+ H2O2 f OH + HO2

30 OH+ HO2 f O + H2O2

31 OH+ H2O2 f H2O + HO2

32 H2O + HO2 f OH + H2O2

33 O2 + H2O2 f HO2 + HO2

34 H2 f H + H
35 H2O f H + OH
36 O2 f O + O
37 HO2 f O2 + H
38 H2O2 f OH + OH

x(t) ) x0e
-t (2.36)

y(t) ) (y0 -
x0

1 + x0
)e-γt +

x0e
-t

1 + x0e
-t

(2.37)

y ) x
1 + x

(2.38)

M (0,t) ) [e-t 0

e-t

(1 + x0e
-t)2

- e-γt

(1 + x0)
2 e-γt ] (2.39)

Λ1
L ) [ e-t

(1 + x0e
-t)2

- e-γt

(1 + x0)
2
,e-γt - e-t] (2.40)

Λ2
L ) [1,0] (2.41)

y ) x
1 + x

+ e-t

γ(e-t - e-γt)( x

(1 + xe-t)2
- x

(1 + x)2) (2.42)
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panel of Figure 3 that the total concentration,N, is roughly
constant, where

During this time interval, the kinetics is dominated by the chain
propagating steps of the mechanism. On a long time scale,t >
10-3 sec, the value ofN changes and the system eventually
relaxes to equilibrium as the termination steps become important.
In terms of attracting manifolds, therefore, early times<10-6

sec are transients during which no low dimensional manifold
attracts the orbits. During the intermediate times, 10-6-10-3

sec, a two-dimensional manifold exists for which the total
concentration is an approximate constant of the motion. Finally,
at long times, all trajectories are attracted to a one-dimensional
manifold as the constant of motion is lost. The general structure
of the attracting manifolds remains qualitatively similar at other
temperatures, pressures, and fuel mixtures. Of course the
quantitative details of the manifolds evolve as these parameters
are varied.

The manifolds are explicitly constructed in Figure 4 for the
case ofT ) 2000 K,p ) 0.276 bar,C1 ) 1016/cm3, andC2 )
1.5 × 1016/cm3. The one-dimensional manifold,M1, is plotted
with a solid line extending from the boundary of the physical
phase space (i.e., positive concentrations). The two-dimensional
manifold,M2, is depicted with a set of rulings. The rulings of
a two-dimensional manifold emanate fromM1 and are curves
along whichN is roughly conserved. Trajectories are plotted
which attract first to the two-dimensional manifold, and then
to the one-dimensional manifold. It is clear that the approach
to equilibrium follows a cascade of manifolds of lowering
dimension.

On a physical level, the reason for the occurrence of the
approximate constant of motion,N, is the existence of a reduced
kinetic scheme that is accurate on intermediate time scales.
Traditional kinetic analysis has identified the subsystem of
reactions consisting of steps 1-8 from Table 1 as an accurate
reduced mechanism on intermediate times.26,27 All these reac-
tions are of the formX + Y f W + Z, i.e., chain propagating
steps, which clearly conserve the total number of molecules.
On long time scales, the slower reactions from Table 1 begin
to contribute and break the constant of motion.

A few more remarks should be made about the construction
of the manifolds in Figure 4. The manifolds were obtained using
the global eigenvalue method discussed in the previous section.
The essential strategy in constructing the two-dimensional
manifold, M2, is to begin by computing the one-dimensional
manifold,M1. To achieve this, we hold [O2] fixed at 0, which
is the boundary of the physical phase space, to select initial
conditions. Then trajectories were propagated backward for
times up to 10-3 sec. The fastestN-1 eigenvectors ofM were
forced to have zero components along the flow using a Newton-
search for a root in initial condition space. The full manifold
M1 is then found by propagating the root initial condition until
equilibrium is reached. Next, starting from initial conditions on
a hyperplane far fromM1, defined byyk ) const, trajectories
are propagated forward until they reach the close vicinity ofM
1, Mins|y(t) - Y(s)| < ε then backward to test their stability.
For a given ruling, a particular values ) s0 is selected, which
defines the point at which the ruling curve connects toM1 within
a toleranceε. Holding yk and s0 fixed, theN-2 fastest eigen-
vectors ofM are forced to zero using a Newton-search in the
initial condition space. Each point onM1 is the termination of
two rulings onM2, which are roughly curves of constantN in
the phase space. Each of these ruling is the attracting curve for
a family of trajectories with the same value ofN on the
intermediate time scale.

We have also applied the other techniques described in section
II to the construction of manifolds for this problem. The Maas-
Pope algorithm was found to provide a very accurate ap-
proximation forM1, often better than three figure precision.
Significant errors were only seen for extreme choices of system
parameters. However, we found the Maas-Pope algorithm was
difficult to apply for the two-dimensional manifold due to

Figure 3. Logarithmic plot of the trajectories shown in Figure 1. In
the first two panels, the concentrations of the eight species is plotted
for two trajectories. The total total concentration,N, is plotted vs log(t)
in the lower panel. The approximate conservation ofN at intermediate
times is clearly apparent from the plot.

N ) ∑
i

yi (3.1)

Figure 4. One- and two-dimensional ALDM for the hydrogen
combustion model obtained using the global eigenvalue method. The
system parameters were chosen to beT ) 2000 K,p ) 0.207 bar,C1

) 1016/cm3, and C2 ) 1.5 × 1016/cm3. The bold line is the one-
dimensional manifold, whereas the solid lines are the rulings of the
two-dimensional manifold. The dashed lines are selected trajectories
that show sequential attraction to the two- then one- dimensional
manifold.
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numerical instability. It is likely that more sophisticated
extrapolation techniques such as described in ref 13 are required
to obtainM2 for this system. The predictor-corrector method
converges robustly to the result obtained using the global
eigenvalue method forM1. The predictor-corrector has not yet
been extended to higher-dimensional manifolds. The modified
Fraser’s algorithm also gives essentially exact results for the
one-dimensional manifold. Using a steady-state approximation
to M1 as the initial guess, the algorithm converges within 10
iterations. However, due to the stiffness of the problem, each
iteration needed to be broken into about 100 integration steps
to ensure stability. We could not provide a satisfactory initial
guess for the modified Fraser algorithm to locate the two-
dimensional manifold, although not a great deal of effort was
expended in testing various possibilities.

As an example of the use of the manifold concept in practical
kinetics, consider the application of the ALDM for chemical
sensitivity analysis. Sensitivity analysis is widely employed to
study the importance of specific reactions or species on the
overall reaction kinetics. In conventional sensitivity analysis, a
trajectory is started at a useful initial condition and the sensitivity
of the concentrations is measured at a later time when, e.g.,
certain rate constants are altered. The basic unit of description
is the sensitivity matrix

wherekj are the sensitivity parameters (e.g., the rate constants).
In the conventional treatment, the sensitivity of “final” con-
centration will have contributions from both the transient kinetics
and the asymptotic manifold kinetics.

We formulate the problem in a somewhat different fashion
by considering the sensitivity of the ALDM itself to perturba-
tions in the mechanism. In this way, the sensitivity of the
reduced mechanism to perturbation is measured. Thus, for a
one-dimensional manifold, we imagine the parametrization

wherek represent, e.g., rate constants. The sensitivity of the
kinetics tok can be decomposed into two parts: the (perpen-
dicular) displacement of the manifold in phase space, and the
perturbation of a trajectory along (parallel) the manifold. As
illustrated in Figure 5, a trajectory started at a point on the

unperturbed manifold will quickly attract to the perturbed
manifold, thus developing a perpendicular component of
displacement independent of starting point (but depending on
s, the final point), and a parallel component depending on both
initial and final conditions. The two sensitivities have different
physical meanings. The perpendicular sensitivity represents
change in the actual reduced mechanism, whereas the parallel
sensitivity reflects an overall rescaling of time within the same
reduced mechanism. The logarithmic sensitivities to changes
in the ith rate constant,ki, can be measured using

and

The displacements∆Yj
|| and∆Yj

⊥ are between the unperturbed
trajectoryy0, and the perturbed trajectoryy′, originated at the
same initial phase space point (on the unperturbed manifold)
and propagated for equal times. Here,s is the parametrization
along the unperturbed manifold. The displacements may be
computed by using satellite trajectories, or by using the
expression for linearized dynamics in the perturbation∆ki

The matrixM is for unperturbed motion and, in the present
case, the initial displacement of the orbit,∆y(0), is zero.

In Figure 6, the sensitivity of the kinetics is plotted for the
caseT ) 1500 K,p ) 0.207 bar,C1 ) 1016/cm3, andC2 ) 1.5
× 1016/cm3. The reaction index labels the reactions using the
numbering scheme shown in Table 1. The manifold is param-
etrized using the logarithm of time. In the upper panel, the
conventional sensitivity is shown. In the lower two panels, the
parallel and perpendicular components are displayed. It is clear
that the position of the manifold, reflected in the perpendicular
sensitivity, is dominantly determined by the first 8 reactions.
This is consistent with the reduced mechanism of Michael that
was deduced using standard kinetics. Reaction 12, formation
of the peroxy-radical, also has a minor effect on the location of
the manifold. Moreover, we see that the forward and backward
reactions of the subsystem 1-8 are nearly in equilibrium, so
that, e.g., the sensitivity of reaction 1 is nearly equal to that of
reaction 2, etc. Thus, the position of the one-dimensional
manifold may be found to good accuracy simply by determining
the equilibrium points of the subsystem 1-8 over the full range
of values for the total concentration,N.

The parallel sensitivities are dramatically different from the
perpendicular components. Reactions 9 (hydrogen recombina-
tion) and 12 (peroxy-radical formation) show the most sensitivity
for much of the manifold. These reactions mediate a decrease
in the total concentration, thus breaking the approximate
conservation ofN that govern the subsystem 1-8 kinetics. The
parallel sensitivities thus reflect the dominant reactions for
breaking the conservation ofN. As the manifold approaches
equilibrium at long times, we also see reactions 24 (OH-
recombination) and 38 (peroxide decomposition) coming in with
nearly equal sensitivities, again with near microreversibility.

Figure 5. Schematic view of the sensitivity of a one-dimensional
ALDM. The unperturbed manifold is labeled byy0, whereas the
perturbed manifold is labeled byy′. A perturbed trajectory is shown to
develop a perpendicular and a parallel component of displacement.

Si,j(t) )
∂yi(y0,t;k)

∂kj
(3.2)

Y(s,k) ) [y1(s,k), yN(s,k)]T (3.3)

Gi
⊥(s,k) ) x∑

j [d ln(∆Yj
⊥(s,k))

d ln(ki) ]2

(3.4)

Gi
||(s,k) ) x∑

j [d ln(∆Yj
|| (s,k))

d ln(ki) ]2

(3.5)

∆y(t) ) ∫0

t
M (t,t′) ‚

∂f(y0)

∂ki
∆kidt′ + M (t,0) ‚∆y(0) (3.6)
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The conventional sensitivity, shown in the upper panel of
Figure 6, does not distinguish parallel, perpendicular, or transient
sensitivity. At very early times,t < 10-4 sec, the standard result
resembles neither the parallel or perpendicular components and
reflect only transient dynamics. At longer times, the standard
sensitivity most strongly reflects the parallel manifold sensitivity.
Thus, in a sense, the standard sensitivity is more of a measure
of the rate of approach to equilibrium (i.e., a time-rescaling)
than it is an indicator of the appropriate subsystem that
determines the phase space position of the ALDM.

IV. Conclusions

The use of ALDM’s provides a natural approach to simplify
complicated systems of kinetics equations. On long time scales,
kinetics trajectories automatically seek out common pathways
to approach equilibrium. If the appropriate ALDM can be
constructed explicitly, the kinetic rate equations can be written
and solved in a much lower dimensional representation. The
practical advantages of such a reduction scheme are clear
because huge computational savings may accrue. The conceptual
advantages of using ALDM are equally important and derive
from adopting a geometrical viewpoint of the manifold. The
position of the ALDM in phase space provides a transparent
means to assess the relative importance of various reactions and

species in the overall mechanism. The dimensionality of the
manifold provides an indication of the minimum number of
independent species required to simulate the kinetics on a given
time scale; and the change in the manifold dimension as time
scale increases probes the cascade of reduced mechanisms.

In this article, we have presented a general discussion of a
number of techniques for the construction of ALDM’s, and
discussed their relative advantages. The modified Fraser algo-
rithm was presented in more detail than in our previous work.
Most importantly, a new method, the global eigenvalue method,
was presented here for the first time. This method was shown
to be a natural extension of the MP-method to global trajectory
dynamics. This method has the important advantage over other
trajectory-based methods in that higher dimensional ALDMs
can be generally constructed. Because the length of time
propagation is a convergence parameter, the MP-method can
be regarded as the∆t f 0 limit of this more general technique.
The application of the global eigenvalue method to the hydrogen
combustion problem demonstrated that the method works well
when applied to realistic kinetics problems. Finally, it was shown
that sensitivity analysis could be formulated in a more useful
way when combined with the ALDM. The sensitivity of the
position of the ALDM with respect to changes in rate constants
provides a means to assess the sensitivity of the reduced
mechanism itself. Conventional sensitivity analysis does not
distinguish between sensitivity of the transient, for which no
reduced model may exist, and that of the long time asymptotic
behavior.
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